References

Clark, R., Lynes, T. E., Price, W. A., Smith, D. H., Woodward, J. K., Marvel, J. P. \& Vernier, V. G. (1971). Toxicol. Appl. Pharmacol. 18, 917-943.

Corfield, P. W. R., Doedens, R. J. \& Ibers, J. A. (1967). Inorg. Chem. 6, 197-204.

Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A 27, 368-376.
Guggenberger, L. J. (1973). Acta Cryst. B29, 2110-2114.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

Middleton, W. J. \& Krespan, C. G. (1970). J. Org. Chem. 35, 1480-1485.

SHORT STRUCTURAL PAPERS

Papers intended for publication under this heading must be in the format prescribed in Notes for Authors, Acta Cryst. (1978). A34, 143157.

Acta Cryst. (1981). B37, 2055-2057

Structure of Cadmium Selenate Monohydrate

By Claes Stålhandske
Inorganic Chemistry 2, Chemical Center, University of Lund, PO Box 740, S-220 07 Lund 7, Sweden

(Received 4 March 1981; accepted 5 May 1981)

Abstract

CdSeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\), monoclinic, $P 2_{1} / c, a=$ 7.679 (2), $b=7.723(2), c=8.207$ (3) $\AA, \beta=$ $120.96(4)^{\circ}, V=417.37 \AA^{3}, Z=4, D_{x}=3.78 \mathrm{Mg}$ $\mathrm{m}^{-3}, \mu(\mathrm{Mo} K \alpha)=12.6 \mathrm{~mm}^{-1}$. For 1281 observed reflexions the final $R=0.023$. The Cd atom is octahedrally coordinated by four selenate groups and two water molecules at $\mathrm{Cd}-\mathrm{O}$ distances of 2.25 $2.42 \AA$.

Introduction. The structures of $\mathrm{CdSeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CdSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ are isomorphous with $\mathrm{HgSeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (Stålhandske, 1978) but different from $\mathrm{HgSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (Stålhandske, 1980). In order to understand better the differences in coordination of Hg^{11} and Cd^{11}, a structural study of Hg and Cd compounds with the same stoichiometry has been started. Isomorphous pairs investigated earlier are $\mathrm{CdSO}_{4}, \mathrm{HgSO}_{4}$ (Aurivillius \& Stålhandske, 1981) and $\mathrm{CdF}(\mathrm{OH})$ (Stålhandske, 1979a), $\mathrm{HgF}(\mathrm{OH})$ (Stålhandske, 1979b).

Crystals of $\mathrm{CdSeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ were obtained by dissolving CdO in concentrated $\mathrm{H}_{2} \mathrm{SeO}_{4}$ according to Herpin \& Bregéault (1968). A single crystal $0.11 \times 0.11 \times$ 0.26 mm was used for the data collection on a CAD-4 diffractometer with Zr -filtered Mo K radiation at room temperature. The $\omega-2 \theta$ scan technique was used with variable scan speeds and peak-scan intervals $\Delta \omega=$ $(0.75+0.75 \tan \theta)^{\circ}$. The maximum time spent on a reflexion was 4 min . Intensities of the 1694 unique reflexions with $3^{\circ} \leq \theta \leq 32.5^{\circ}$ were measured within
one quadrant of reciprocal space. Of these, 1281 with $I>3 \sigma(I)$ were corrected for Lorentz-polarization and absorption effects and used in the analysis. The transmission factors, evaluated by numerical integration, varied from 0.27 to 0.36 . Three standard reflexions were measured during the data collection. They showed a maximum deviation from the mean of 3%.

The atomic positions for the non-hydrogen atoms were taken from the structure of $\mathrm{HgSeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ and refined by full-matrix least squares with anisotropic temperature factors and a parameter to correct for secondary extinction (Zachariasen, 1967). The H-atom positions, as found in difference syntheses, could not be

Table 1. Fractional atomic coordinates and $B_{\text {eq }}$ values $\left(\AA^{2}\right)$ with estimated standard deviations in parentheses

$B_{\text {eq }}=\frac{4}{3} \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{l} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}$
Cd	0.21101 (3)	0.23809 (3)	0.25817 (3)	1.19 (1)
Se	0.26096 (4)	0.61488 (4)	0.51574 (4)	0.87 (1)
O(1)	0.1209 (3)	0.4895 (3)	0.3326 (3)	1.46 (6)
$\mathrm{O}(2)$	0.3410 (3)	0.5054 (3)	0.7136 (3)	1.40 (6)
O(3)	0.4554 (4)	0.6970 (3)	0.5158 (4)	1.58 (6)
O(4)	$0 \cdot 1056$ (4)	0.7707 (3)	0.4990 (4)	1.43 (6)
$\mathrm{O}(W)$	0.2700 (3)	$0 \cdot 1010$ (3)	0.5378 (3)	1.24 (6)
$\mathrm{H}(1)$	0.212	0.024	0.516	
H(2)	0.404	0.086	0.613	

(c) 1981 International Union of Crystallography
refined and were therefore included with fixed parameters in the final refinement, which gave $R=0.023$, $R_{w}=0.029, S=1.03$. The extinction parameter g was $0.67(3) \times 10^{4}$ and the corrections applied to $\left.\left|F_{o}\right|\right\rangle$ $1 \cdot 10$ for 3% of the reflexions. The form factors of Doyle \& Turner (1968) were used for the Cd, Se and O atoms and for H that of Stewart, Davidson \& Simpson (1965) was used. The anomalous-dispersion parameters for Cd and Se were taken from Cromer \& Liberman (1970). The function minimized was $\sum w_{i}\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, with $w_{i}^{-1}=\sigma^{2}\left(F_{o}\right)+\left(0.020\left|F_{o}\right|\right)^{2}$

Table 2. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$

In the $\mathrm{CdO}_{4}\left(\mathrm{OH}_{2}\right)_{2}$ polyhedron

$\mathrm{Cd}-\mathrm{O}(1)$	2.249 (2)	$\mathrm{O}(1)-\mathrm{Cd}-\mathrm{O}\left(2^{1}\right)$	172.8 (1)
$\mathrm{Cd}-\mathrm{O}\left(2^{1}\right)$	2.246 (2)	$\mathrm{O}\left(3^{\text {III }}\right)-\mathrm{Cd}-\mathrm{O}(W)$	74.8 (1)
$\mathrm{Cd}-\mathrm{O} 3^{\text {liII }}$)	$2 \cdot 316$ (3)	$\mathrm{O}(W)-\mathrm{Cd}-\mathrm{O}\left(4^{\text {11 }}\right.$)	122.3 (1)
$\mathrm{Cd}-\mathrm{O}\left(4^{\text {II }}\right.$)	2.269 (3)	$\mathrm{O}\left(4^{\text {il }}\right)-\mathrm{Cd}-\mathrm{O}\left(W^{\text {l }}\right.$)	76.8 (1)
$\mathrm{Cd}-\mathrm{O}(W)$	$2 \cdot 350$ (2)	$\mathrm{O}\left(W^{\prime}\right)-\mathrm{Cd}-\mathrm{O}\left(3^{\text {III }}\right)$	86.1 (1)
$\mathrm{Cd}-\mathrm{O}\left(W^{\prime}\right)$	2.421 (2)		

In the SeO_{4} group

$\mathrm{Se}-\mathrm{O}(1)$	$1.640(2)$	$\mathrm{O}(1)-\mathrm{Se}-\mathrm{O}(2)$	$109.7(1)$
$\mathrm{Se}-\mathrm{O}(2)$	$1.644(2)$	$\mathrm{O}(1)-\mathrm{Se}-\mathrm{O}(3)$	$113.6(1)$
$\mathrm{Se}-\mathrm{O}(3)$	$1.622(2)$	$\mathrm{O}(1)-\mathrm{Se}-\mathrm{O}(4)$	$104.4(1)$
$\mathrm{Se}-\mathrm{O}(4)$	$1.650(2)$	$\mathrm{O}(2)-\mathrm{Se}-\mathrm{O}(3)$	$108.9(1)$
		$\mathrm{O}(2)-\mathrm{Se}-\mathrm{O}(4)$	$110.2(1)$
		$\mathrm{O}(3)-\mathrm{Se}-\mathrm{O}(4)$	$109.9(1)$

In the water molecule and hydrogen bonds

$\mathrm{O}(W)-\mathrm{H}(1)$	0.71	$\mathrm{H}(1)-\mathrm{O}(W)-\mathrm{H}(2)$	114.6
$\mathrm{O}(W)-\mathrm{H}(2)$	0.89		
$\mathrm{O}(W) \cdots \mathrm{O}\left(4^{v}\right)$	$2.791(3)$		
$\mathrm{O}(W) \cdots \mathrm{O}\left(2^{\text {lv }}\right)$	$2.713(3)$		
$\mathrm{H}(1) \cdots \mathrm{O}\left(4^{\text {v }}\right)$	2.10		
$\mathrm{H}(2) \cdots \mathrm{O}\left(2^{\text {lv }}\right)$	1.84	$\mathrm{O}\left(2^{\text {lv }}\right) \cdots \mathrm{O}(W) \cdots \mathrm{O}\left(4^{v}\right)$	$95.5(1)$

Symmetry code

None	x, y,	z	(iii)	$1-x, 1-y, 1-z$	
(i)	$x, \frac{1}{2}-y$,	$z-\frac{1}{2}$	(iv)	$1-x, y-\frac{1}{2}$,	$\frac{3}{2}-z$
(ii)	$-x, y-\frac{1}{2}$,	$\frac{1}{2}-z$	(v)	$x, y-1$,	z

$+0 \cdot 20$. The final parameters are given in Table 1,* selected interatomic distances in Table 2.

Fig. 1 shows the normal probability plot $\delta R(i)=$ $\left.\left[\left|F_{o}(i)\right|-\left|F_{c}(i)\right|\right] / \sigma| | F_{o}(i) \mid\right]$ versus the values expected for a normal distribution (Abrahams \& Keve, 1971). The slope (0.97) and the intercept (0.07) of the least-squares line fitted to all data indicate that on average $\sigma\left(\left|F_{o}\right|\right)$ is correctly estimated. However, about $20 \delta R$ terms, mainly from weak reflexions, show systematic errors. This could partly be due to the method used in the measurements, which seems to give values for the background which are too small.
The unit-cell dimensions were calculated from a least-squares analysis of 35θ values measured on the diffractometer at room temperature.

Discussion. Among the compounds of the Group II b elements with formula $M \mathrm{SeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{CdSeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{HgSeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ are isomorphous but differ from $\mathrm{ZnSeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (Pistorius, 1966). The metal atom in $\mathrm{CdSeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ is coordinated by four different selenate groups and two water molecules, forming $\mathrm{CdO}_{4}\left(\mathrm{OH}_{2}\right)_{2}$ octahedra. The water molecules link the octahedra in the c direction to form chains, which are further connected by the selenate groups and hydrogen bonds to form a three-dimensional structure (Fig. 2).

The $\mathrm{Cd}-\mathrm{O}$ bond lengths within the distorted $\mathrm{CdO}_{4}\left(\mathrm{OH}_{2}\right)_{2}$ octahedron vary between 2.246 and $2.421 \AA$ with an average of $2.31 \AA$; corresponding $\mathrm{Hg}-\mathrm{O}$ distances in $\mathrm{HgSeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ are 2.260-2.499 \AA and $2.37 \AA$. The difference in average bond length, $0.06 \AA$, is close to the difference in ionic radius for $\mathrm{Cd}^{2+}(0.95 \AA)$ and $\mathrm{Hg}^{2+}(1.02 \AA)$ (Shannon, 1976). The variation in the corresponding bond lengths between the two compounds is, however, considerable, ranging from 0.014 to $0.156 \AA$ (Fig. 3). A closer comparison between $\mathrm{CdSeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CdSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (Bregeault \& Herpin, 1970) is not possible as the e.s.d's in the $\mathrm{Cd}-\mathrm{O}$ bonds ($2.21-2.36 \AA$) are $0.02-0.06 \AA$ in the sulphate.

Fig. 2. The structure of $\mathrm{CdSeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$. The $\mathrm{O} \cdots \mathrm{H}$ bonds are drawn with thin lines.

(a)

(b)

Fig. 3. The metal coordination in (a) $\mathrm{CdSeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ and (b) $\mathrm{HgSeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$. (Distances in \AA.)

Octahedra of formula $\mathrm{CdO}_{4}\left(\mathrm{OH}_{2}\right)_{2}$ are also building elements in $\mathrm{K}_{2} \mathrm{Cd}\left(\mathrm{SeO}_{4}\right)_{2} .2 \mathrm{H}_{2} \mathrm{O}$ (Peytavin, Philippot \& Lindqvist, 1974) and in $3 \mathrm{CdSO}_{4} .8 \mathrm{H}_{2} \mathrm{O}$ (Lipson, 1936; Caminiti \& Johansson, 1981). The $\mathrm{Cd}-\mathrm{O}$ bonds range from 2.253 (6)* to $2 \cdot 316$ (6) \AA in $\mathrm{K}_{2} \mathrm{Cd}\left(\mathrm{SeO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and from 2.268 (3) to 2.303 (3) \AA for the two nonequivalent Cd atoms in $3 \mathrm{CdSO}_{4} .8 \mathrm{H}_{2} \mathrm{O}$. In both these compounds the water molecules are non-bridging with $\mathrm{Cd}-\mathrm{OH}_{2}$ distances much shorter than in $\mathrm{CdSeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$. Octahedral coordination is also found for the two independent Cd atoms in $\mathrm{K}_{2} \mathrm{Cd}\left(\mathrm{SO}_{4}\right)_{2} \cdot 1 \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (Borène \& Solery, 1972). Each Cd atom is coordinated by five sulphate O atoms ($\mathrm{Cd}-\mathrm{O}$ 2.18-2.30 \AA) and one water molecule $\left(\mathrm{Cd}-\mathrm{OH}_{2} 2 \cdot 37,2 \cdot 42 \AA\right.$) bridging the two octahedra.

The selenate tetrahedron in $\mathrm{CdSeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ is only slightly distorted, with $\mathrm{O}-\mathrm{Se}-\mathrm{O}$ angles of $104-114^{\circ}$ and $\mathrm{Se}-\mathrm{O}$ distances of $1 \cdot 622-1.650 \AA$ (Table 2). The mean value of the $\mathrm{Se}-\mathrm{O}$ distances, $1.639 \AA$, is in very good agreement with the mean value of $1.64 \AA$ calculated from a number of selenate structures by Valkonen, Niinistö, Eriksson, Larsson \& Skoglund (1975). As the selenate tetrahedra in both $\mathrm{CdSeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{HgSeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ are almost regular,

[^0]the considerable distortion of the sulphate group ($\mathrm{S}-\mathrm{O}$ $1.42-1 \cdot 61 \AA$) found in the isomorphous $\mathrm{CdSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ is probably not correct. In $\mathrm{CdSeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ the four selenate groups are coordinated to Cd with bond angles $\mathrm{Se}-\mathrm{O}-\mathrm{Cd}$ of $112-136^{\circ}$ with an average value of 126°; corresponding S-O-Cd angles in $3 \mathrm{CdSO}_{4} .8 \mathrm{H}_{2} \mathrm{O}$ are $125-136^{\circ}$ and 131°.

The hydrogen bonds in $\mathrm{CdSeO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (Table 2), which occur between the water molecule and the selenate atoms $O(2)$ and $O(4)$, are of normal strength, with $\mathrm{O} \cdots \mathrm{O}$ distances of 2.71 and $2.79 \AA$.

This work has been supported by the Swedish Natural Science Research Council.

References

Abrahams, S. C. \& Keve, E. T. (1971). Acta Cryst. A27, 157-165.
Aurivillius, K. \& Stålhandske, C. (1981). Z. Kristallogr. In the press.
Borène, J. \& Solery, J. P. (1972). Acta Cryst. B28, 2687-2694.
Bregéault, J.-M. \& Herpin, P. (1970). Bull. Soc. Fr. Minéral. Cristallogr. 93, 37-42.
Caminiti, R. \& Johansson, G. (1981). Acta Chem. Scand. In the press.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Doyle, P. A. \& Turner, P. S. (1968). Acta Cryst. A24, 390-397.
Herpin, P. \& Bregéault, J.-M. (1968). Bull. Soc. Fr. Minéral. Cristallogr. 91, 296-297.
Lipson, H. (1936). Proc. R. Soc. (London) Ser. A., 156, 462-470.
Peytavin, S., Philippot, E. \& LindQqist, O. (1974). Rev. Chim. Minér. 11, 37-47.
Pistorius, W. F. T. (1966). Z. Anorg. Allg. Chem. 347, 223-224.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Stålhandske, C. (1978). Acta Cryst. B34, 1408-1411.
Stålhandske, C. (1979a). Acta Cryst. B35, 2184-2186.
Stålhandske, C. (1979b). Acta Cryst. B35, 949-951.
Stålhandske, C. (1980). Acta Cryst. B36, 23-26.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

Valkonen, J., Niinistö, L., Eriksson, B., Larsson, L. O. \& Skoglund, U. (1975). Acta Chem. Scand. Ser. A, 29, 866-872.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

[^0]: * Misprinted as $2 \cdot 153$ (6) \AA in the original paper.

